

Differences in soil carbon among farmland types

Hartpury Research Conference 2024

Wing Kwan Pauline Ng (Department of Animal and Agriculture)

Supervisors: Prof. Matt Bell, Dr Day Teixeira (Hartpury), Dr Adrian Crew, Dr Pete Maxfield (UWE Bristol)

THE SOME TIMES
THE SUNDAY TIMES
GOOD
UNIVERSITY
GUIDE
2023
TOP 10
FOR TEACHING
GUALITY

A LEVELS, DIPLOMAS, UNDERGRADUATE, POSTGRADUATE, RESEARCH

Agenda

- **01** Background and rationale
- **02** Timeline for project objectives
- **03** Methodology and challenges (UAV imaging)
- **04** Initial UAV imaging review
- **05** Initial NIRS results recap
- 06 Final wrap-up

01 Background

Utilised agricultural area in UK (Defra, 2023)

❖ No standard prescription from the popular and available carbon assessment tools for agricultural benchmarking and practice use and (NFU, 2019; CIEL, 2020; Arla, 2021)

Area on agricultural

01 Rationale

How about soil and plant variabilities across agricultural land use change over seasons (Vickery et al., 2009; Bell et al., 2014, 2018; Macedo et al., 2022)?

02 Timeline for project objectives

Start

Research proposal and ethics application in 2022

Objective 1

Near-infrared spectroscopy (NIRS) measurements for field variabilities on Hartpury and Wildlife Trust Cirencester mixed farms in 2023-2024

Processing...

Objective 3

Evaluate actual farm seasonal changes with aerial remote-sensing technique in 2023-2024

Patience...

AFCP Blog

3 things I learned from on-farm carbon assessment

Objective 2

Compare the ground-truth measurements with golden laboratory standard in 2024

Objective 4

Determine how different carbon assessment techniques applied on-farm for more quality data in 2025

Fruits

Publications, thesis write-up and oral defense

03 Field study area

03 Data collection

Adjust UAV setting

03 Data processing

(Photogrammetry)

Imagery data	Critical vegetation indices (vegetation changes and sensitivity monitoring)								
	GCI	GLI	NDVI	GNDVI	VARI	VIgreen			
RGB		\checkmark			$\sqrt{}$	V			
Multispectral	$\sqrt{}$		√	√					

03 Key challenges

- Good weather?
- Flying altitude (≤ 120m)?
- Flying speed (5-8m/s)?
- Overlap rate (≥ 80%)?

04 Initial UAV imaging review

GOOD

05 Initial NIRS results recap

THE ASSETIMES THE SUNDAY TIMES GOOD UNIVERSITY GUIDE 2023
TOP 10 FOR TEACHING QUALITY

Table 1: Predicted mean (s.e.) of soil and plant nutrients for samples at Hartpury and Wildlife Trust farms (extracted)

Variables	Units	Arable Crops	Temporary Leys	Permanent Grass	Woodland
¹ Soil					
Organic carbon (SOC)	g/kg	26.4 (1.5) ^a	27.4 (1.8) ^a	34.8 (1.3) ^b	36.5 (3.9) ^b
Total nitrogen (TN)	g/kg	2.5 (0.1) ^a	2.7 (0.2) ^a	3.3 (0.1) ^b	3.3 (0.4) ^{ab}
Clay	%	23.0 (0.9) ^a	26.5 (1.1) ^b	21.4 (0.8) ^a	18.4 (2.3) ^a
SOC/TN	ratio	10.4 (0.1) ^{ab}	10.1 (0.1) ^a	10.6 (0.1) ^{bc}	11.0 (0.3) ^c
SOC/ Clay	ratio	0.13 (0.009) ^a	0.12 (0.010) ^a	0.17 (0.007) ^b	0.22 (0.022) ^b
¹ Plant					
Height	cm	7.1 (0.4) ^a	6.3 (0.5) ^a	4.5 (0.4) ^b	-
Fresh density	kg FM ha ⁻¹ cm ⁻¹	1073 (127) ^a	1093 (150) ^a	1502 (108) ^b	-
Dry density	kg FM ha ⁻¹ cm ⁻¹	198 (30) ^a	290 (35) ^{ab}	349 (26) ^b	-
Crude protein	g/kg DM	223 (5.8) ^a	200 (6.9) ^b	235 (5.0) ^a	-
Oil	g/kg DM	22.6 (0.37) ^a	18.9 (0.44) ^b	21.5 (0.32)°	-

¹Means within a column for the variable field and with different superscript letters (i.e., a,b,c) differ significantly and attributed at P value <0.05.

06 Final wrap-up

NIRS & aerial imaging analysis

- Gather key field variables like SOC, TN, Clay, crude protein, oil, plant height and vegetation cover information
- Considerable variation between critical soil and plant parameters across land uses

Accuracy and practicability

- Reduce time, cost and human efforts on real-time precision farm monitoring
- Verify confidence levels for both techniques with laboratory analysis

Future exploration

- Soil carbon stock estimates
- Vegetation performance indices
- Tillage practice monitoring
- Plant health status assessment

Do what you love Love what you do

Email: wing.ng@hartpury.ac.uk | wing8.ng@live.uwe.ac.uk

Website: https://pure.hartpury.ac.uk/en/persons/wing-ng

A LEVELS, DIPLOMAS, UNDERGRADUATE, POSTGRADUATE, RESEARCH