Using the traditional ex vivo whole blood model to discriminate bacteria by their inducible host responses.
Chick, Heather M.; Rees, Megan E.; Lewis, Matthew L.; Williams, Lisa; Bodger, Owen; Harris, Llinos G.; Rushton, Steven; Wilkinson, Thomas S.

Published in: Biomedicines
Publication date: 2024
The re-use license for this item is: CC BY
This document version is the: Peer reviewed version

The final published version is available direct from the publisher website at: 10.3390/biomedicines12040724

Find this output at Hartpury Pure

Using the traditional ex vivo whole blood model to discriminate bacteria by their inducible host responses.

Heather M. Chick¹, Megan E. Reeš¹, Matthew L. Lewis¹, Lisa K. Williams¹,², Owen Bodger³, Llinos G. Harris¹, Steven Rushton⁴ and Thomas S. Wilkinson¹*

Abstract: Whole blood models are rapid and versatile for determining immune responses to inflammatory and infectious stimuli, but they have not been used for bacterial discrimination. Staphylococcus aureus, S. epidermidis and Escherichia coli are the most common causes of invasive disease and rapid testing strategies utilising host responses remain elusive. Currently immune responses can only discriminate between bacterial ‘domains’ (fungi, bacteria and viruses) and very few studies can use immune responses to discriminate bacteria at the species and strain level. Here, whole blood was used to investigate the relationship between host responses and bacterial strains. Results confirmed unique temporal profiles for the ten parameters studied; IL-6, MIP-1α, MIP-3α, IL-10, resistin, phagocytosis, S100A8, S100A8/A9, C5α and TF3. Pairwise analysis confirmed that IL-6, resistin, phagocytosis, C5α and S100A8/A9 could be used in a discrimination scheme to identify the strain level. Linear discriminant analysis (LDA) confirmed that i) IL-6, MIP-3α and TF3 could predict genera with 95% accuracy; ii) IL-6, phagocytosis, resistin and TF3 could predict species at 90% accuracy and iii) phagocytosis, S100A8 and IL-10 predicted strain at 40% accuracy. These data are important because they confirm the proof of concept that host biomarker panels could be used to identify bacterial pathogens.

Keywords: Ex vivo whole blood models; Host immune responses; Bacterial discrimination; Pairwise comparison; Multivariate analysis; Staphylococcus epidermidis; Staphylococcus aureus; Escherichia coli

1. Introduction

Human ex vivo whole blood models have been used for several years to investigate numerous biological, pathological and toxicological effects on immune cells in an environment that closely mimics the biological fluid present in vivo. The ability to measure soluble mediators released from cells in addition to the cell surface or functional readouts of the cells themselves confirms the utility of such models. Human blood has been used to determine inflammatory responses to pathogen associated molecular patterns (PAMPs) [1-4], or to whole bacteria [5]. It has been used to identify viral pathogens through the IFN-γ release assay [6]. The sensitivity of human blood has found utility in assessing Lipopoly saccharide (LPS) and other pyrogens, contamination of pharmaceuticals or inorganic bioaerosols [7], and is a practical surrogate for determining monocyte responses in situ [8-12]. We and others have used human blood to model disease processes, to compare with patient serum [13] and to uncover mechanisms of disease pathogenesis. Indeed,
when combined with LPS or dexamethasone models of immunosuppression are possible [14, 15].

The three most important bacterial pathogens responsible for invasive diseases (e.g., bacteraemia and sepsis) are *Escherichia coli*, *Staphylococcus epidermidis* and *S. aureus* and are responsible for >50% of infections [16, 17]. Previous studies have confirmed the pattern recognition receptors (PRRs) responsible for immune responses to these pathogens. They show that i) *E. coli* is dependent on Toll-like receptor 4 (TLR-4) [18, 19]; ii) *S. aureus* is dependent on TLR-2, NOD-like receptor (NLR) and C-type lectin receptor (CRP) signalling [20]; and iii) *S. epidermidis* induces pathways dependent [21] and independent on TLR-2 signalling [22]. In severe infections with these organisms, the diversity in inflammatory responses [23] can potentially inform on patient state and antimicrobial therapy, and has the potential to offer a diagnostic tool as to the microbial source of the infection.

Current identification of these pathogens relies on traditional microbiological techniques, which take at least 24 hours for identification and are vulnerable to contamination or show reduced specificity and sensitivity [24-27]. Cellular host responses, including C-reactive protein (CRP), procalcitonin (PCT), whole blood counts, erythrocyte sedimentation rate (ESR) and acute phase cytokines (TNF, IL-8, IL-6 etc.) have all been inconsistent in terms of their discriminatory power for identifying sepsis and cannot discriminate between causative organisms [28-33]. Indeed host immune signatures have only recently managed to discriminate organisms at ‘domain’ level to separate bacterial, fungal and viral responses [34]. New model systems and proof of concept studies are needed to challenge lower order (genus, species and strain) discrimination of bacteria.

The versatility of *ex vivo* whole blood models suggested to us that they could be used to investigate the diversity of bacteria responses and used for discrimination. While it is clear that whole blood models have been applied to bacterial [35, 36], fungal [37] and viral organisms [38] there are far fewer studies focusing on the potential range of whole blood responses to pathogenic stimuli in healthy donors [1]. To date, no studies have focused on whether the physiological range of *ex vivo* whole blood responses could be used for the discrimination of bacteria. Specifically, whether whole blood responses might aid in the discrimination of bacteria at genera, species and even at strain level. This study uses an established *ex vivo* whole blood model [15] to generate bacterial induced cytokine profiles of mediators associated with inflammation (IL-6, MIP-1α, MIP-3α, resistin, IL-10), coagulation (TF3), complement (C5a) and neutrophil function (S100A8, S100A8/A9 [calprotectin], phagocytosis) following stimulation with eight strains of bacteria (across three species and two genera). Then, this data was used to investigate the level of bacterial strain discrimination that could be achieved from the measured host responses.

2. Materials and Methods

All methods were carried out in accordance with relevant guidelines and regulations. All reagents were purchased from Sigma-Aldrich unless stated otherwise.

2.1 Ethics

Whole blood from healthy volunteers was isolated using the vacuette blood collection system (5–9 ml) on the day of the experiment in either Lithium Heparin (Becton Dickinson, Wokingham, UK). Volunteers gave written informed consent. The project (Reference 13/WA/0190) was reviewed and the procedures and protocols approved by the local research ethics committee, **Wales REC 6** (E-mail: Wales.REC6@nhs.uk).

2.2 Whole blood infection

Three bacterial species (*E. coli*, *S. aureus* and *S. epidermidis*) were selected for profiling and were represented by 8 strains (Supplementary Table S1; [39-51]). One bacterial colony (of each of the 8 strains) was inoculated into sterile broth and incubated at 37°C overnight. The next day a standardised suspension of each bacterium was prepared in RPMI at an...
optical density of 0.1 OD600nm. Then, 100µl of standardised suspension was added to 1 ml of anticoagulated whole blood (n=5) to a final Multiplicity of Infection of 0.2 as described previously [15, 52]. The whole blood : bacteria interaction mix was incubated for 2-6 hours on a Stuart SB3 rotator at 37°C before being centrifuged at 9000g at room temperature. The supernatant was removed and stored at -20°C until ELISA analysis.

2.3. Membrane Cytokine Array

Cytokine screening after whole blood infection (with E. coli K12, S. epidermidis RP62A, S. aureus SH1000 and untreated) for 6-hours was measured using the Human XL Cytokine Array kit (R & D Systems, Minnesota, USA; n = 1). The membranes were treated as per manufacturer instructions and were imaged on the BioRad ChemiDoc XRS+. Images were processed using ImageJ online software (Version 1.50i; https/imagej.net/ij/index.html).

2.4. Enzyme linked immunosorbent assay (ELISA)

The production of the proteins IL-6, C5a, TF3, IL-10, S100A8 (calgranulin A), S100A8/A9 (calprotectin), resistin, MIP-1α and MIP-3α in whole blood following infection with 8 defined strains, was analysed using Duoset ELISA kits purchased from R & D Systems (Minnesota, USA; n = 5). The ELISAs were performed as per manufacturer instructions and optical densities (450 nm) were determined using a BMG Omega plate reader. Samples were blank corrected, and a 4-parameter fit applied to generate a standard curve from which sample concentrations were calculated (performed using BMG Mars data analysis software v3 02R2).

2.5. Phagocytosis

One hundred microlitres of whole blood was removed at 2, 4 and 6-hours post-infection and mixed with 1.5 ml 1X FACs Lysing Solution (BD Biosciences, Wokingham, UK) before incubating at room temperature for 20 minutes (n = 5). Tubes were centrifuged, the supernatant discarded, and the pellet resuspended in 100 µl PBS (Thermo Fisher Scientific, Loughborough, UK). Then, 80 µl of the suspension was placed into a cytopin funnel cartridge attached to a microscope slide and centrifuged in a Cytospin 3 (ThermoShandon, Thermo Fisher Scientific, Loughborough, UK) at 300g for 3 minutes. Slides were stained with Red & Purple Microscopy Hemacolor (Merck, London, UK) before being mounted with cover slips. Slides were left to dry between each described step and were viewed using a Nikon eclipse 50i microscope at x1000 magnification under oil immersion (x100X objective). Neutrophils were identified and the number of phagocytosed and non-phagocytosed neutrophils counted in random fields of view as previously described [52]. The percentage of phagocytosis was recorded as the degree of phagocytosis.

2.6. Discrimination of bacteria

Pairwise analysis: The process of discrimination between strains consisted of two parts, identifying the candidate discriminators and then constructing a flowchart. While most cases contained readings from 3 time points, the readings always increased with time and so only the final time point was used in each case. The most important biomarkers, and their possible use, were identified through their statistical significance and a visual inspection of the data. Once these had been chosen a flowchart was constructed to perform a stepwise classification process using this subset of biomarkers. At each stage of the process a simple threshold on one biomarker was used to determine which branch to follow, until a final classification was reached.

2.7. Linear Discriminant Analysis:

Individual chemokine and cytokine biomarkers were used as covariates in Linear Discriminant Analysis (LDA) with the replicate samples of cyto-/chemokine responses to
individual pathogens used as group descriptors [53]. LDA seeks to find the combination of measured biomarkers to optimise the separation of groups in the cyto-chemokine space. It is a stepwise procedure which first identifies the best discriminating variable separating groups and then progressively adds other covariates, whilst accounting for the covariation between them. Variables are only added as discriminators if they lead to a significant discriminatory effect. We used the greedywilkes function in R to identify the smallest suite of cyto-/chemokines that led to the maximum discrimination [54]. We used a three-tier hierarchy of taxonomic grouping to define our initial groups. These were strain, species and genus, the hypothesis being that we would expect greatest discrimination using the biomarkers firstly, for genus, then species and then strain on the assumption that the greatest differences in host responses would be greatest at the greatest taxonomical differences in pathogens. In order to assess the utility of the biomarkers for discriminating between members of each taxonomic grouping we used the derived discriminant functions to reclassify the original data used in the LDA and then used contingency tables to illustrate the predictive accuracy of the best model for each group.

2.8. Data presentation and statistical analysis

The data set consisted of a number of biomarker readings, with 10 different biomarkers, 8 bacterial strains, and one uninfected control. Preliminary analysis of the data leading to the classification flowchart was performed using ANOVA, with post-hoc testing, on log-transformed data. Logistic Regression was then used to obtain the estimated thresholds controlling the branching process. Formal comparisons of the numeric differences between treatments were then performed using the (non-parametric) Kruskal-Wallis tests with Dunn’s multiple comparison tests applied. A 5% level of significance was observed. All plots display error bars denoting the standard error of the mean (SEM) and asterisks indicate the level of significance; * = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** p < 0.0001. Data presentation and analysis was performed using GraphPad Prism version 7 and SPSS version 28.

3. Results

3.1. Establishment of mediator profiles to use in modelling datasets.

Building on our previous results in whole blood using *S. epidermidis* 1457 [15] eight bacterial strains (Supplementary Table S1) were used to infect whole blood prior to determination of 10 host responses, including IL-6 (acute phase response), IL-10, MIP-1α (CCL-3), MIP-3α (CCL-20), Resistin, C5α (complement activation), tissue factor-3 (TF-3; coagulation cascade), S100A8 (calgranulin A) and S100A8/A9 (calprotectin; neutrophil activation) and phagocytosis (neutrophil function). IL-6, Resistin, MIP-1α and MIP-3α were identified during a cytokine microarray of whole blood factors induced by more than 3-fold following *E. coli* K12, *S. epidermidis* 1457 or *S. aureus* SH1000 infection compared to control (Supplementary Figure 1A and B). IL-8 and TNFα were also identified in this screen but were increased in response to all bacteria, suggesting poor potential for discrimination and were not studied further.
Figure 1. Changes in monocyte associated cytokines IL-6 and IL-10 following ex vivo infection. Cytokines associated with IL-6 and IL-10 were measured by ELISA after 2, 4 and 6-hours post-infection (n=5 donors). Changes in IL-6 over time in response to A) Control, Staphylococcus and Escherichia genera; B) control, E. coli, S. aureus and S. epidermidis species; and C) to each bacterial strain. Changes in IL-10 over time in response to D) Control, Staphylococcus and Escherichia genera. Error bars represent the mean ± SEM. In A), * represents significant differences between the infected and control, and * represents significant differences between Escherichia and Staphylococcus. In B) * represents significant differences between E. coli and S. epidermidis and between E. coli and S. aureus. In B) * represents significant differences between E. coli and S. aureus. In C) significant differences are represented between two strains and/or control by black lines and asterisks indicating the level of significance. Here, asterisks represent the following significant values: * = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001.

3.2. IL-6 and MIP proteins show significant early induction in Escherichia infection.

IL-6 (Figure 1A, B, C), MIP-3α (Figure 2A, B and C), and MIP-1α (Figure 2D, E and F) levels were shown to significantly increase over the course of the infection, but with unique induction kinetics. These increases were significantly greater in the Escherichia genera (Figure 1A, 2A and 2D, p < 0.00001) compared with both the untreated control and Staphylococcus genera at all time points. This trend was consistent at species level (Figure 1B, 2B and 2E) where E. coli induced significantly more IL-6 and MIP-3α than both S. aureus and S. epidermidis (p < 0.00001). MIP-1α was only significantly induced in E. coli compared to control at species level (Figure 2E). At the strain level (Figure 1C, 2C and 2F), all E. coli strains (with the exception of strain B at 2 hours) induced significant levels of IL-6.
over the course of the infection compared with the control (p < 0.00001; Figure 1C). This trend was consistent for MIP-3α (Figure 2C) although the profile between strains differed (strains B and K12 did not induce significantly more IL-6 at 2 hours and strain B did not at 4 hours; Figure 1C). The profile of MIP-1α (Figure 2C, D and E) was considerably flatter compared to IL-6 and MIP-3. *E. coli* strains ECOR26, GMB10 and B induced significantly more than the control at 2 hours only (p = 0.0068; Figure 2F) and strain B at 6 hours only (p = 0.0312; Figure 2F). The anti-inflammatory cytokine IL-10 was not detected at 2- and 4-hours post-infection and no differences were found at 6 hours post-infection (p = 0.0823; Figure 1D).

![Figure 2. Changes in monocyte associated chemokines, MIP-1α and MIP-3α following *ex vivo* infection. MIP-3α and MIP-1α were measured by ELISA after 2, 4 and 6-hours post-infection (n=5 donors). Changes in MIP-3α over time in response to A) Control, *Staphylococcus* and *Escherichia* genera; B) to control, *E. coli*, *S. aureus* and *S. epidermidis* species; and C) to each bacterial strain. Changes in MIP-1α over time in response to D) Control, *Staphylococcus* and *Escherichia* genera; E) to control, *E. coli*, *S. aureus* and *S. epidermidis* species; and F) to each bacterial strain. Error bars represent the mean ± SEM. In A) and D), * represents significant differences between the infected and control, and ** represents significant differences between *Escherichia* and *Staphylococcus*. In B) and E) * represents significant differences between *E. coli* and *S. epidermidis* and between *E. coli* and *S. aureus*. In C) and F) significant differences are represented between two strains and/or control by black lines and asterisks indicating the level of significance. Here, asterisks represent the following significant values: * = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001.](image)
Figure 3. Changes in neutrophil associated parameter resistin and phagocytosis following *ex vivo* infection. Resistin and phagocytosis were measured after 2, 4 and 6-hours post-infection (n=5 donors). Plots are presented as changes in resistin over time in response to A) Control, *Staphylococcus* and *Escherichia* genera; B) to control, *E. coli*, *S. aureus* and *S. epidermidis* species; and C) to each bacterial strain. Neutrophil phagocytosis was investigated using microscopy over 6 hours in response to D) Control, *Staphylococcus* and *Escherichia* genera; E) to control, *E. coli*, *S. aureus* and *S. epidermidis* species; and F) to each bacterial strain. Error bars represent the mean ± SEM. In A and D), * represents significant differences between the infected and control; and * represents significant differences between *Escherichia* and *Staphylococcus*; in B) and E), * represents significant differences between *E. coli* and *S. aureus*, and * represents significant differences between *E. coli* and *S. epidermidis*. Finally, in C) and F) significant differences are represented between two strains or control by black lines and asterisks indicate the level of significance. Here, asterisks represent the following significant values: * = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001.

3.3. The hormone resistin is associated with all infection and may differentiate *S. epidermidis* and *S. aureus* bacteria.

ELISA analysis of resistin was performed on samples obtained at 2-, 4- and 6-hours post-infection (Figure 3A-C). At the genera level (Figure 3A), both *Escherichia* and *Staphylococcus* induced significantly high levels of resistin at 2- and 6-hours post-infection compared with the control (p < 0.0001) but not significantly different to each other. At species level it was only at 6 hours that both *S. aureus* and *S. epidermidis* induced significantly higher resistin concentrations than both the control and *E. coli* (p = 0.0107; Figure 3B). Interactions at the strain level confirmed that only *E. coli* GMB10 induced significantly higher levels of resistin at 2 hours post-infection (p = 0.0051; Figure 3C). At 4 and 6 hours, *S. aureus* strain SH1000 and *E. coli* ECOR26 and GMB induced significantly higher levels of resistin compared with the control (p = 0.0012, p = 0.0005).
Figure 4. Changes in neutrophil associated parameters S100A8 and S100A8/A9 following ex vivo infection. S100A8 and S100A8/A9 were measured after 2, 4 and 6-hours post-infection (n=5 donors). Plots are presented as changes in S100A8 over time in response to A) Control, *Staphylococcus* and *Escherichia* genera; B) to control, *E. coli*, *S. aureus* and *S. epidermidis* species; and C) to each bacterial strain. Changes in S100A8/A9 (calprotectin) over time in response to D) Control, *Staphylococcus* and *Escherichia* genera; E) to control, *E. coli*, *S. aureus* and *S. epidermidis* species; and F) to each bacterial strain. Error bars represent the mean ± SEM. Here, asterisks represent the following significant values: * = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001.

3.4. Neutrophils take up significantly more *Staphylococci* than *Escherichia* bacteria.

Phagocytosis (%) of *S. epidermidis*, *S. aureus* and *E. coli* strains over the first 6 hours of infection was used to assess the functional activity of neutrophils (Figure 3D-F). At genera level, significantly more *Staphylococcus* was taken up by neutrophils than *Escherichia* (p < 0.0001; Figure 3D). No phagocytosis was detected in the uninfected controls. At the species (Figure 3E) and strain (Figure 3F) level *S. epidermidis* 1457, RP62A and *S. aureus* SH1000 had significantly increased phagocytic responses compared to control (p < 0.0001; Figure 3E and F).

The neutrophil activation markers S100A8 (inactive calprotectin, Figure 4A, B and C) and S100A8/A9 (active calprotectin, Figure 4D, E and F) were found to be increased over the course of the experiment but at no timepoint was there any significant differences between the treatment groups (p > 0.05). Complement (C5a) and coagulation (TF3) were also assessed over identical time courses but, neither were shown to be different to the control (supplementary figure 2A/B and 3A/B). C5a was undetectable after 6 hours (data not shown).

3.5. Pairwise modelling allows bacterial discrimination down to strain level.
Next pairwise relationships (Figure 5A and B) between the inflammatory parameters were investigated with the aim of developing a scheme to discriminate the bacterial strains studied (Supplementary Table S1) based on host responses generated in the ex vivo model. Reorganisation of pairwise comparisons (Figure 5A) allowed the development of a scheme with discrimination at four levels; 1) Infection; 2) Genera; 3) Species; and 4) Strain (Figure 5A). When organised in this manner, increased IL-6 could discriminate between infected and uninfected samples (p<0.001). Furthermore, increased IL-6 could also discriminate infection with Escherichia and Staphylococcus at the genera level (p<0.001). Increased Resistin showed some discrimination between S. aureus and S. epidermidis at the species level (p=0.087). Similarly, increased phagocytosis could discriminate E. coli GMB and ECOR26 from E. coli strain B and K12 within a species (p<0.001). In addition, increased C5a could discriminate between E. coli strain B and K12 at the strain level (p=0.007). Finally, within the S. aureus species increased S100A8/9 could discriminate SH1000 from VAP39 at the strain level (p<0.001). These results confirmed the proof of concept that measurement of sufficient immune responses allows discrimination to bacterial strain level in ex vivo whole blood models.

Figure 5. Pairwise discrimination of bacterial immune responses. Data generated in the ex vivo models were analysed, including the 10 inflammatory outputs over three timepoints, leading to a branching classification process across Genera, Species and Strain levels. The branching process is illustrated in Upper Panel A, while the pairwise comparisons driving this process are listed in Lower Panel B with the discriminating biomarker, the threshold of the relevant biomarker level and
associated performance value are shown. Values lower and higher than threshold should ‘turn left’ and ‘right’ respectively in panel 5A.

3.6. Linear Discriminant Analysis provides host biomarker panels for bacterial discrimination.

The pairwise analysis confirmed the potential of host responses for discrimination of bacteria but did not allow all inflammatory profiles to be analysed together to determine inter-relationships. Linear Discriminant Analysis (LDA) was used to identify a panel of inflammatory parameters that best discriminate bacteria at genera, species and strain levels (Table 1, and 2) and (Supplementary tables S2, S3 and S4). In this analysis we speculated at what level could immune responses generated by a given bacterial strain predict responses generated by strains from a given genera, species and strain. The analysis revealed that correct prediction rates of 40, 90 and 95% could be achieved for strain, species and genera respectively using different cyto-/chemokine biomarkers (Table 1). Furthermore, phagocytosis, S100A8 and IL-10 were the most significant discriminating immune parameters to predict strain when combined (Table 2a). IL-6, phagocytosis, resistin and TF were the most significant discriminating parameters associated with species (Table 2b) and IL-6, TF3 and MIP3α were the most significant discriminating parameters associated with genera (Table 2c). These results further support the proof of concept that immune parameters could be used to predict the presence of individual bacteria.

Table 1. Linear Discriminant Analysis (LDA) of immune responses. Data generated in the ex vivo models were analysed, including the 10 inflammatory outputs over three timepoints. The table shows the recorded accuracy of immune responses to predict bacteria at the genera, species and strain level. The underlying analysis reported in this table is shown in Supplementary Tables S2, S3 and S4.

<table>
<thead>
<tr>
<th>Level</th>
<th>Correct predictions (observations)</th>
<th>Correct prediction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strain</td>
<td>16/40</td>
<td>40</td>
</tr>
<tr>
<td>Species</td>
<td>36/40</td>
<td>90</td>
</tr>
<tr>
<td>Genera</td>
<td>38/40</td>
<td>95</td>
</tr>
</tbody>
</table>

Table 2. Variables identified as important to bacterial discrimination. Data generated in the ex vivo models were analysed, including the 10 inflammatory outputs over three timepoints. Table 2a confirms the immune variables predicting strain (Phagocytosis, S100A8, IL-10). Table 2b confirms the immune variables predicting species (IL-6, phagocytosis, resistin and TF3). Table 2c confirms the immune variables predicting genera (IL-6, TF3 and MIP-3α).

Table 2a: Variables predicting strain

<table>
<thead>
<tr>
<th>Biomarker</th>
<th>Wilks lambda</th>
<th>p value overall</th>
<th>p value diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phagocytosis</td>
<td>0.564</td>
<td>0.0064</td>
<td>0.0064</td>
</tr>
<tr>
<td>S100A8</td>
<td>0.396</td>
<td>0.0050</td>
<td>0.1053</td>
</tr>
<tr>
<td>IL-10</td>
<td>0.259</td>
<td>0.0017</td>
<td>0.0546</td>
</tr>
</tbody>
</table>

Table 2b: Variables predicting species

<table>
<thead>
<tr>
<th>Biomarker</th>
<th>Wilks lambda</th>
<th>p value overall</th>
<th>p value diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-6</td>
<td>0.313</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>Phagocytosis</td>
<td>0.193</td>
<td>0.0000</td>
<td>0.0187</td>
</tr>
<tr>
<td>Resistin</td>
<td>0.133</td>
<td>0.0000</td>
<td>0.0888</td>
</tr>
<tr>
<td>TF3</td>
<td>0.095</td>
<td>0.0000</td>
<td>0.1527</td>
</tr>
</tbody>
</table>

Table 2c: Variables predicting genera

<table>
<thead>
<tr>
<th>Biomarker</th>
<th>Wilks lambda</th>
<th>p value overall</th>
<th>p value diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-6</td>
<td>0.391</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>TF3</td>
<td>0.336</td>
<td>0.0000</td>
<td>0.0179</td>
</tr>
</tbody>
</table>
4. Discussion

This study focused on whether ex vivo whole blood responses could be used for the discrimination of bacteria at genera, species and/or strain level with a future goal of applying this knowledge (e.g. to bacteraemia and sepsis diagnosis). Indeed, accurate diagnosis of bacterial infections remains a significant challenge and are often hindered by variations in the immune response between different individuals. The current study used an ex vivo whole blood model to study immune responses to a core set of clinically relevant species (S. aureus, S. epidermidis and E. coli) that are implicated in bacteraemia and sepsis [16, 34]. In addition, we sought to confirm the proof of concept of whether host responses could predict bacterial pathogens and to what discriminatory level.

Previous reports suggest that bacteria reach concentrations ranging from 1-10,000 cfu/ml in clinical bacteraemia with average ranges in the 100-1000 cfu/ml range [16, 55-59]. Considering that leukocyte concentrations are ~2 x 10^9 cfu/ml, relevant MOIs for modelling should be in the 0.00000005 – 0.0005 range. However, there are a number of considerations when using MOIs in practice. Firstly, during clinical infections leukocyte numbers and bacterial numbers change over the course of infection. Secondly, very low MOIs such as this do not stimulate early cytokine responses ex vivo because they are often cleared rapidly. Thirdly, there is now good evidence that PAMPs and DAMPs may not only be associated with live bacteria but also in soluble forms not associated with bacteria [60, 61]; Fourthly, viable bacteria are counted in cfu/ml, but many studies also quantify genome copies/ml using nucleic acid amplification techniques [62]; Finally, recent studies suggest that microbial composition also has a role to play in outcome measurements in experimental models of sepsis [63].

Studies to discriminate bacterial ‘Gram-status’ by their immune responses have a long history. It is clear that most bacteria, induce IL-1β, TNFα, IL-2, IL-18, IL-6, IL-8, IL-12, IFN-γ, and IL-10 [64-67] in blood monocytes or in whole blood models. These studies tend to show that TNFα, IL-2, IL-12 and IFN-γ responses are stronger in Gram positive bacteria, whereas IL-6, IL-8, IL-10, and IL-18 responses tend to be stronger in Gram negative bacteria. This is consistent with IL-6 responses observed in this study and also in Gram negative versus Gram positive bacteraemia [68-71]. Furthermore, others have suggested that IL-6 and IL-10 may be useful in discriminating Gram negative from Gram positive infections [72]. Tietze and coworkers suggest that Gram negative species produce higher ratios of IL-8/TNFα than Gram positive species [73]. Similar experiments performed using whole animal infection in mice or fish models show strain dependence rather than species and Gram dependence and confirm the need for further strain testing [74, 75]. Our results with IL-6 support a clear discrimination for Gram negative species and strains and is consistent with these studies.

The mechanism underlying these cytokine differences is still unclear, however, the different combinations of pathogen associated molecular patterns (PAMPs) and the subsequent PRRs they activate, as well as their intracellular or extracellular localisation, could in part explain these different patterns of expression. Previous work has identified that the Lipopolysaccharide (LPS) of Gram-negative E. coli activates TLR-4. In contrast, lipoteichoic acid [76] and lipoproteins of peptidoglycan from Gram-positive S. aureus activate TLR-2 and NOD-like receptors [77]. Furthermore, polysaccharide intercellular adhesin, phenol soluble modulins (PSMs) and muramylpeptides from Gram-positive S. epidermidis activate combinations of TLR-1, TLR-2, TLR-6 [78-80]. These interactions are especially crucial when comparing the activation profile to different bacterial pathogens.

While previous studies have implicated numerous cytokines, this study identified four useful markers as bacterial discriminators: IL-6, resistin, MIP-3α and neutrophil phagocytosis. IL-6 and MIP-3α showed significant associations with Gram-negative Escherichia coli infections in whole blood and were consistently elevated compared with those...
in Gram-positive *Staphylococcus* infections. The relationship between IL-6 and MIP proteins seems intrinsically linked; *in vivo*, MIP-1α (and beta) has been shown to correlate with levels of IL-6 in sepsis [81]. IL-6 has already been demonstrated to be a strong predictor of severity in sepsis, and with Gram-negative bacterial sepsis [82]. The close mechanistic relationship between IL-6 and MIP-3α may support the use of the latter as a diagnostic biomarker for certain types of bacterial sepsis. In support of our findings, one other study has identified increased MIP-3α in sepsis patients with diagnostic and prognostic value [83].

Resistin was identified as a potential biomarker to discriminate *S. aureus* and *S. epidermidis* at the species level. Consistent with our results, resistin has been found in elevated concentrations in the blood of patients and may be linked to an inflammatory cytokine network in the acute phase of sepsis [84]. Further studies have linked resistin to the severity of sepsis using clinical scoring outcomes [85, 86]. There is less evidence for the use of resistin as a bacterial discriminatory biomarker, but our data does warrant further investigation in response to Gram-positive bacteria.

Neutrophil phagocytosis was positively associated with Gram-positive infections. This association is significant as it could have potential value in the diagnosis of staphylococcal infections. However, the disparity in the response, between Gram positive and negative infection, could also be explained by the virulence of the strains used in the study – the *S. aureus* strains VAP39 and SH1000 and the *S. epidermidis* strains 1457 and RP62A, are all known for their highly virulent phenotypes, whereas *Escherichia* strains GMB10, K12, B and ECOR26 are all regarded to be non-pathogenic strains (Supplementary Table S1). While neutrophil phagocytosis is implicated in sepsis the exact role that bacterial ‘species’ designation play is unclear [87]. Despite this, *E. coli* strains consistently induced high levels of cytokines in whole blood, indicating a general mechanism of cytokine production, which may be responsible for decreased phagocytosis. We speculate that another reason for this disparity in phagocytosis could be associated with differences in evasion mechanisms. *E. coli* has inherent resistance for survival where iron is limited (such as in human blood and serum) by producing siderophores and to phagocytosis given its colonic acid coat [88]. In contrast, *S. aureus* has less resistance to phagocytosis but tends to persist within professional phagocytes through mechanisms of resistance to reactive oxygen species and intracellular killing [89].

The complement and coagulation molecules C5a and TF3, had very specific utility in discriminating the bacteria studied. In our pairwise analysis, C5a had potential application in differentiating *E. coli* strains, B and K12. We speculate this may be related to differing types of LPS in those bacteria. In contrast in our multivariate analysis TF3, when combined with IL-6, phagocytosis and resistin or IL-6 and MIP-3α could discriminate bacterial species and genera respectively. This work may implicate monocyte-derived (in addition to endothelial derived) TF3 as important in bacterial responses [90]. However, the role of C5a as a biomarker remains unclear considering the technical difficulties in their measurement due to lack of stability, its interaction with anticoagulant systems and the incomplete understanding of its receptor C5aR2 [91-93].

Application of pairwise and multivariate methods allowed us to confirm proof of concept that host response signatures can discriminate bacteria. It was clear that certain pair-wise comparisons had 100% predictive power (Figure 3B) but were limited to very well-defined comparisons, such as Uninfected vs Infection or *Staphylococcus vs Escherichia*. Clearly, these pairs would find utility as part of wider biomarker panels. In contrast, multivariate analysis showed a predictive power decreasing in the order genera (95%) → species (90%) → strain (40%). The panels for genera (IL-6, TF3 and MIP-3α) and species (IL-6, phagocytosis, resistin and TF3) are intriguing as they overlap consistently with the pairwise analysis. It is clear that phagocytosis and resistin should be investigated further to discriminate *Escherichia/Staphylococcus* genera and *S. epidermidis/S. aureus* species respectively.
That the LDA clearly identified ‘panels’ of host biomarkers as a discriminatory approach to identify bacteria at ‘genera’, ‘species’ and even ‘strain’ level is vitally important. A similar approach was used to discriminate S. aureus, E. coli, C. albicans and A. fumigatus and highlighted the importance of IL-6 and associated signalling molecules SOCS3 and IRF [37]. To date, however, studies focus at the ‘domain’ level of microorganism, confirming host signatures for bacterial, fungal and viral responses [34]. Recently, an 8-gene panel has been used to discriminate extracellular, intracellular and viral infections across diverse global populations [94]. Likewise, an 81-set gene signature was used to discriminate bacterial and viral infection in immunocompromised hosts [95]. However, it is clear that while domain level discrimination using host signatures is demonstrated widely there is need for significant standardisation and benchmarking at species level as cross-reactive unintended infections and aging processes can take over in the analysis [96]. It is now becoming increasingly clear that host response signatures for blood-based infection diagnostics [97-99] will complements similar approaches for direct detection of pathogens [100]. The application of multi-panel host-specific biomarkers to discriminate pathogens is paving the way for personalised medicine.

The use of whole blood from healthy donors allows for a comparative method of determining host response signatures for infection diagnosis. While ex vivo whole blood models have shown versatility for the study of monocyte activation [8-12], IFN-γ-release assays [6], cell specific immune triggers (e.g PAMPs) [1-4] and even the effect of storage and stability of cytokines [101, 102], we believe the current application for bacterial discrimination is novel. There are significant advantages and limitations to using this model to assess healthy human responses to bacteria (Table 3). While LPS can be given ex vivo and in vivo in humans no pre-clinical in vivo human model exists for bacterial assessment. Knowledge of the diversity of healthy human responses is relatively sparse or is only available through standardised PAMP screening [1]. Thus, expanding this model to collections of characterised bacterial pathogens is a vital next step.

Table 3: Advantages and limitations of human ex vivo whole blood models. List of considerations for implementation of whole blood models in bacterial discrimination and biomarker discovery

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple and rapid to perform</td>
<td>Lack of endothelial cells and other immune mediator-producing cells</td>
</tr>
<tr>
<td>Can measure both soluble and cellular mediators of inflammation</td>
<td>Presence of anticoagulants interfering with complement and coagulation pathways</td>
</tr>
<tr>
<td>Versatile application to a variety of assays and disease situations</td>
<td>Absence of liver and acute phase proteins</td>
</tr>
<tr>
<td>Only basic healthy volunteer ethics required</td>
<td>Potential for donor variation</td>
</tr>
<tr>
<td>Experiments complete in one day</td>
<td>Requires checks on plastic/vehicle activation</td>
</tr>
<tr>
<td>Use of a primary biological tissue/fluid/suspension</td>
<td>Longer experiments (>8 hours) not feasible</td>
</tr>
<tr>
<td>Complements the human endotoxemia model without compromising patient safety</td>
<td>Impact of disease severity (sepsis vs septic shock) not possible to measure</td>
</tr>
</tbody>
</table>

We recognise that this study is not without its limitations; i) the inclusion of eight bacterial strains across three species. While this limits the scope of the current study, it
nevertheless provides sufficient data for proof of concept that bacterial genera, species and strain discrimination using the host immune response is possible; ii) the choice of bacterial collection within a species could be better defined and include E. coli strains from bacteraemia patients; iii) the relatively small number of blood donors (n=5), is sufficient for proof of concept but does not describe the variation in host response in a healthy population [1]. Finally, it is clear that more advanced multivariate analysis and modelling approaches used to determine cytokine interdependencies and networks may also provide a rational next step for biomarker discovery [103-106].

5. Conclusions

In summary, this paper provides proof of concept data that host biomarker panels could be used to identify bacterial pathogens, at orders lower than ‘domain’ with increasing accuracy strain → species → genera. Using the whole blood model as a workhorse to assay inflammatory responses but analysing them using LDA provides a simple strategy to discriminate bacteria from the host responses they generate.

Supplementary Materials: The following supporting information can be downloaded at: www.mdpi.com/xxx/s1, Supplementary Table S1: Bacterial strains used throughout this study, Supplementary Figure S1: Bacterial induced cytokine screen for biomarker identification, Supplementary Figure S2: Changes in C5a following ex vivo infection, Supplementary Figure S3: Changes in TF3 following ex vivo infection, Supplementary Table S2: Linear Discriminant analysis of predicted and observed variables (strain level), Supplementary Table S3: Linear Discriminant analysis of predicted and observed variables (species level), Supplementary Table S4: Linear Discriminant analysis of predicted and observed variables (genera level).

Author Contributions: All authors have read and consent to publication of the manuscript. Author contributions are as follows; HC performed the experiments. ML and MR supported the microbiology experiments. LW and LGH supported the microbiology and read the manuscript. OB and SR undertook the modelling and discriminant analysis. TSW was responsible for the conceptual design of experiments. TSW drafted the manuscript. All authors reviewed and approved the manuscript.

Funding: This work was funded by a Health Care Research Wales (HCRW-HS-18-32) PhD scholarship for ML awarded to TSW, funded by a Swansea University scholarship for HMC awarded to TSW, partially funded by a BBSRC grant (BB0191421/1) awarded to TSW.

Institutional Review Board Statement: The project (Reference 13/WA/0190) was reviewed and the procedures and protocols approved by the local research ethics committee (20th June 2013), Wales REC 6 (E-mail: Wales.REC6@nhs.uk).

Informed Consent Statement: Not Applicable.

Data Availability Statement: datasets presented in this manuscript are available upon request from the corresponding author.

Acknowledgments: None: see funding.

Conflicts of Interest: “The authors declare no conflicts of interest.”

References

Disclaimer/