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ABSTRACT 

Objective: To quantify varied human motion and obtain an objective assessment of relative 

performance across a cohort. Approach: A wrist-worn magnetometer was used to record and 

quantify the complex motion patterns of 55 children aged 10-12 years old, generated during a 

fundamental movement skills programme. Sensor-based quantification of the physical activity used 

dynamic time warping of the magnetometer time series data for pairs of children. Pairwise 

comparison across the whole cohort produced a similarity matrix of all child to child correlations. 

Normative assessment scores were based on the Euclidean distance between n participants within 

an n-1 multi-variate space, created from multi-dimensional scaling of the similarity matrix. The 

sensor-based scores were compared to the current standardised assessment which involves binary 

scoring of technique, outcome and time components by trained assessors. Main Results: 

Visualisation of the relative performance using the first three axes of the multi-dimensional matrix, 

shows a ‘performance sphere’ in which children sit on concentric shells of increasing radius as 

performance deteriorates. Good agreement between standard and sensor scores is found, with 

Spearman rank correlation coefficients of the overall activity score in the range of 0.62-0.71 for 

different cohorts and a kappa statistic of 0.34 for categorisation of all 55 children into lower, middle, 

upper tertile and top 5% bands. Significance: By using multi-dimensional analysis of similarity 

measures between participants rather than direct parameterisation of the physiological data, 

complex and varied patterns of physical motion can be quantified, allowing objective and robust 

profiling of relative function across participant groups. 

 

Keywords: magnetometer, time series analysis, dynamic time warping, movement skill, physical 

activity, multi-dimensional scaling 

  

Page 1 of 18 AUTHOR SUBMITTED MANUSCRIPT - PMEA-102369.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



2 
 

1. BACKGROUND 

The accurate measurement and recording of physical motion is an important aspect of many health 

and wellbeing programmes(Maud and Foster 2006, Penedo and Dahn 2005, Lynch et al 2014). 

Automated, objective measurement can be achieved with wearable, electronic sensor 

technologies(Brandes et al 2006, Godfrey et al 2008, Ermes et al 2008, Mathie et al 2004) and in the 

main these have focused on the quantity of physical activity or energy expenditure. In practise, 

physical activity measurement programmes can follow product-oriented analyses that require such 

quantitative measures of outcome, e.g. time taken or distance moved(Rudd et al 2016, Lander et al 

2017), but alternatively they may be process-oriented and seek qualitative assessment of how a 

movement is performed. Thus, in many instances a more nuanced approach is required to ascertain 

the quality of movement, as for example, in the assessment of fundamental movement 

skills(Morgan et al 2013). This brings a measurement challenge as varied and complex motion 

patterns are inherently difficult to parameterise and as a result they are often judged by aesthetic 

criteria. Standardisation can be established through formal scoring schema but a tendency towards 

variability remains as approaches are fundamentally based on subjective human assessment(Barnett 

et al 2014). 

 

In this paper, we present a normative assessment approach which is based on correlation of motion 

patterns, as represented in time series data from magnetometer sensors. The quantification process 

is based on the whole of the activity trace and scores the relative performance of individuals within a 

cohort. To demonstrate the validity of our approach we benchmark the sensor-based scoring against 

standard metrics for a children’s activity programme, designed to assess fundamental movement 

skills(Stratton et al 2015). This application area is appropriate for whilst physical activity has long 

been recognised as being beneficial to children’s health(Sallis et al 2000), reducing the risk of 

disease(Sirard and Pate 2001), combating obesity(Hills et al 2011) and improving non-health 

indicators such as educational achievement(Coe et al 2006); there is growing appreciation of 

approaches that provide greater discrimination in the assessment of activity. For example, 

techniques focusing on motor competence(Robinson et al 2015), fundamental movement skills 

(FMS) (Fisher et al 2005) and holistic concepts such as physical literacy(Tremblay and Lloyd 2010). 

The aim here is to assess the content or quality of human movement rather than just its intensity or 

duration(Myer et al 2015). This move towards more complex and subtle discrimination of movement 

introduces significant challenges to attaining formalised and quantitative metrics of outcome(Janz 

2006, Trost 2001).  

 

Inertial measurement devices have been used with signal analysis routines to machine-score specific 

activities or components within a varied activity programme (Bisi et al 2017, Allen et al 2006). This 

paper presents an alternative, process-oriented quantification of complex motion in which pairwise 

comparison of individuals is made using time trace correlations of position sensor data(Barnes et al 

2016). We take a novel approach in analysis -  instead of directly following the standard scoring 

protocol and trying to computationally identify specific motion parameters within each activity we 

extract comparative measures between children based on the whole of their activity trace. We then 

use the relative ranking of a study cohort to generate overall performance scores. Our premise is 

that during the performance of a varied sequence of activities the defining character in quality of 

movement or perfection of skills lies in the precise way in which a child moves through space. 

Therefore, if this motion pattern is captured by a sensor and then mathematically compared for 

different children, we can obtain a meaningful measure of their relative ability. Motion traces are 

recorded using a magnetometer attached to the participant’s wrist as they progress through a series 

of nine discrete exercises. Previous approaches using wearable sensors tend to focus on 
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identification of specific gestures(Akl et al 2011) or discrimination between specific activities, e.g. 

walking or cycling(Mannini et al 2013). Here we consider the whole complex motion pattern and 

analyse the complete exercise sequence rather than deconstructing the activity set. We measure the 

similarity between any two chosen children using Dynamic time warping (DTW) – a time series 

analysis technique which provides cross-correlated differences between the data sets, at multiple 

time points(Zhou and De La Torre 2016). DTW has been shown to be of use for human motion 

analysis, enabling classification of physical motion motifs(Ten Holt et al 2007, Musculo et al 2007). 

The full set of pairwise comparative coefficients from DTW allows us to construct a similarity matrix 

for the whole group. This matrix contains information on all possible relationships between the 

measured cohort. To visualise these and to obtain a unique ranking of individuals we adopt a data 

clustering approach(Braun et al 2010) and use Multidimensional Scaling algorithms(Borg and 

Groenen 2005, Hout et al 2013) to transform the similarity matrix into a map of relative 

performance.  

 

Our aim is to demonstrate the general validity of the motion-based, normative approach. We do not 

attempt to undertake a detailed comparative study of specific clinical application or exercise 

programme. The analysis techniques are demonstrated on data from a movement skills programme 

for children. But they are applicable for any motion study that requires assessment of overall 

movement pattern rather than limited sets of biomechanical metrics and which seeks to rank or 

compare subjects. For example, in profiling gait abnormality or deterioration against a healthy 

population(Hausdorff et al 1998, Halliday et al 1998) or in quantifying return to full physiological 

competence following sports injuries(Andrew et al 2010, Podlog and Eklund 2006). 

 

 

2. METHODS 

The motion tracking sensor 

The motion sensors used were custom built Micro Electro-Mechanical System (MEMS) based 

devices, that have been validated in previous studies(Barnes et al 2016). The sensors incorporated a 

tri-axial accelerometer with a +/- 16 g dynamic range, 3.9 mg resolution (ADXL345 sensor, Analog 

Devices) and a magnetometer with a +/- 8 Gauss range, 2 milli-Gauss resolution (HMC5883L sensor, 

Honeywell). The devices were set to record to an on-board micro-SD memory card at an acquisition 

frequency of 40 Hz. All data analysis was carried out using the MATLAB 2015b programming 

environment (Mathworks, U.S.A.) using in-built or custom-written functions. 

Participants and settings 

After receiving clearance to implement the study from the institutional research ethics committee, 

55 children (33 female, 22 male) from 4 schools (school A – 20, B – 14, C – 12, D - 9) (11±0.5y, 

1.45±0.06m, 40.4±9.4kg, body mass index; 19±3.5 kg.m2) agreed to take part in the study. 

Participants had anthropometric variables recorded using standard techniques(Lohman et al 1988). 

Participants attended an indoor training facility where they took part in a multi-component 

assessment of physical activity. During this, participants wore motion sensors housed in a small 

plastic case and affixed via a Velcro strap to their right ankle (lateral malleolar prominence of the 

fibula) and dominant wrist (posterior wrist joint). All children from a single school were assessed in a 

single session, each school was assessed in a separate session on differing days. 

The activity assessment was undertaken as part of the Sport Wales Dragon Challenge(Stratton et al 

2015). Dragon Challenge V1.0 (DC V1.0), is a single practical assessment and designed to measure 
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the stability, locomotor and object control components of fundamental movement skills of children 

in school years 6 to 7 (10-12 years old). In the DC V1.0 children complete 9 activities in a continuous 

circuit in a timed trial – there are no waiting periods, each activity is performed immediately 

following the previous one. Participation in the challenge requires spatial awareness (changes in 

direction and levels) and awareness of effort (changes in speed, force and flow) in relation to various 

objects, goals, and boundaries. Participants also utilise important cognitive attributes such as 

confidence, decision-making and reading the environment as they navigate through the tasks against 

the clock. A schematic, depicting each of the activities can be found in the DC V1.0 manual(Stratton 

et al 2015), in sequence they are: 

1. Balance Bench: Walk the length of the narrow side of a bench beam, completing a 360 degree 

turn at mark before dismounting at the end of the bench. 

2. Core Agility: Complete 4 body shape positions (dish - arch - dish - arch), rotating the body in both 

directions. 

3. Wobble Spot: Complete 5 bean bag ‘passes’ around the body while balancing on the wobble spot 

on one leg. 

4. Overarm Throw: Throw a tennis ball, using an overarm throw, at a target approximately 9 metres 

away. 

5. Basketball Dribble: Using either hand, dribble a basketball around 4 coloured spots positioned in a 

‘z’ formation. 

6. Catch: Catch a tennis ball thrown underarm at a rebound net from any distance. 

7. Jumping Patterns: Complete a jumping pattern sequence that includes a series of hops and jumps 

(2 footed jump over hurdle > 2 footed landing > 2 left hops > 2 right hops > 2 foot jump over hurdle > 

2 footed landing).  

8. T-Agility: Complete t-agility run, facing forwards throughout. 

9. Sprint: 10m acceleration to a sprint over finish line. 

Data analysis 

All data were collected at an acquisition frequency of 40 Hz. The dynamic time warping is 

implemented on the complete recorded trace, without sectioning or pre-filtering, using the MATLAB 

function – ‘dtw’. Multidimensional scaling is done using the ‘cmdscale’ MATLAB function. 

Spearman’s rank correlation coefficient, rs, was used to quantify the comparison of human-based 

and sensor scoring methods. This was calculated using the in-built Matlab function and implemented 

on the whole activity score. Bland-Altman plots were also used to analyse the level of agreement 

between human and sensor scores within each individual school-based activity session. Cohen's 

kappa coefficient, κ, was used to assess machine-human reliability in assignment of performance 

category (Bronze, Silver, Gold, Platinum). This was calculated with custom algorithms written in 

Matlab. 
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3. EXPERIMENTAL PROCEDURES AND RESULTS 

Quantification of activity 

The complete set of recorded motion data includes 12 time traces, consisting of 3-axis signals from 

wrist and ankle worn, magnetometer and accelerometer. Even in this small study with 55 

participants and using a relatively low sampling frequency of 40 Hz there are over 4 million data 

points. In this first implementation of the analysis our aim is to demonstrate its applicability using a 

limited measurement set and so the wrist-worn magnetometer trace for the radial direction (axis 

running from elbow to wrist) was chosen as the single reporting signal. The aim was to quantify the 

pattern of movement of each child, over the full set of exercises with a minimised data set, thus 

allowing for maximal implementation in large cohort studies. Improved accuracy and resolution can 

of course be obtained by expanding the data set to include orthogonal axes, higher sampling rates, 

different measurement variables and multiple sensor positions. The positional data from the 

magnetometer is preferred to the acceleration data as it provides a direct measure of motion 

through space. The wrist position is chosen as it carries information for all activity types, whereas 

the ankle mounted sensor shows a limited response for exercises such as throwing or catching. 

Finally, the radial axis was chosen as it provides a signal that is independent of the compass direction 

when the arm is in a relaxed position by the side of the body; produces a strong signal for movement 

within the vertical or horizontal planes and exhibits good differentiation of activities within the 

exercise sequence.  

A typical trace from a child, completing the Dragon challenge within a 2-minute time span, is shown 

in figure 1. The presence of a signal minimum at points between the activities together with the 

positive values produced by arm motion during the exercise produces a trace with distinct blocks, 

corresponding to the 9 discrete activities. Unique signatures corresponding to distinct spatial 

patterns can be seen, e.g. a series of sharp peaks as a bean bag is passed behind the back during the 

wobble spot activity or a concerted, high displacement band during the bouncing of a ball in the 

basketball dribble. 
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The appearance of patterns within the magnetometer time trace, that clearly relate to the detail of 

the required motion within each activity, confirms that the recorded time series is a valid description 

of a child’s performance. The next step in analysis was to compare this time record for different 

children. This was done by implementing a dynamic time warping on the wrist-magnetometer 

signals from pairs of participants. A typical pair of traces, prior to and post-implementation of the 

time warping, is shown in figures 2A & 2B. These are from a platinum category child (above 95th 

percentile) who completed the challenge in 2 min 14 s (5370 sample pts.) and a slower silver 

category child (33rd – 66th percentile), who took 2 min 50 s (6780 sample pts.). Implementation of 

the time warping produces two traces, transformed to be of equal length by the insertion of 

constant value sequences. This process is completed in a manner that minimises the difference 

 

Figure 1: typical time series trace from a wrist-worn sensor with 

annotated activity sequence. The relative change in position as measured 

by the magnetometer is shown (arbitrary units).   
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between the two traces. The degree of time warping required is determined by 2 factors: i. the 

overall time difference for completion of the challenge by the two children (macro-scale) and ii. the 

point-to-point differences in the signal shape (micro-scale). 

The length of the warped time-series is taken as the parameter describing the degree of similarity 

between a pair of children, i.e. larger differences between traces lead to an enhanced degree of time 

warping and an extended trace length. This parameterisation can be visually described using a DTW 

contour map, of the type shown in figures 3A and 3B. The contour map is constructed from a 

difference matrix D(t, ) which describes the normalised difference between signals S1(t) and S2() at 

time points t and : 

𝐷(𝑡, 𝜏) =
|𝑆1(𝑡)−𝑆2(𝜏)|

𝑚𝑎𝑥|𝑆1(𝑡)−𝑆2(𝜏)|𝑎𝑙𝑙 𝑡,𝜏
    (1) 

 

 

Figure 2: A.) representative, as-measured magnetometer time-series for two 

children (platinum – blue trace, silver – red trace); B.) the two data sets after 

implementation of Dynamic Time Warping. (the upper data set in both sub-plots is 

offset on the y-axis by 0.5 units to provide visual clarity) 
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The imaginary line tracing a straight diagonal running from top left to bottom right of the contour 

map relates the two signals at a common time point and so depicts the signal difference under the 

condition of t = . Thus, for identical signals (or auto-correlation) this will equal zero for all time 

values. 

 

The red lines in figures 3A and 3B trace the actual path of minimum difference; because of non-

identical signals this does not follow the diagonal, i.e. for any time point, t a time shift, t = |t-|, is 

required to find like-values for signals S1 and S2. In figure 3A the comparison is between two children 

with widely differing scores in the challenge. The path of minimum difference therefore deviates 

markedly from the diagonal, showing large horizontal and vertical steps where the time warping 

process inserts signal transformations. In contrast, the comparison between like performers in figure 

 

Figure 3: A.) DTW contour map of traces from a Platinum and a Bronze band child; B.) DTW 

contour map of traces from two Platinum band children. Time-series traces are shown in 

adjacent sub-plots. The contour scale indicates the signal difference on a normalised scale. 
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3B produces a much straighter path with only minor deviations from the diagonal. To obtain a 

quantitative measure of these signal differences, the fractional increase in the minimum difference 

path length, (t,) relative to the length of the diagonal, d(t=) is taken as the similarity co-

efficient,n,m between children i and j: 

Ω𝑖,𝑗 =
(𝛿−𝑑)

𝑑
     (2) 

 

For a cohort of n children, the pairwise comparison by DTW produces an n x n similarity matrix of i,j 

values. 

 

Cohort profiling 

To obtain a ranking of all children within a cohort the similarity matrix must transformed to a single 

parameter data set. This is achieved by clustering the children using multi-dimensional scaling 

(MDS). The approach allows visualisation of the performance of the cohort and produces a ranking 

measure that is based on comparison of relative ability between all participants. MDS of an n x n 

similarity matrix produces an n-1 co-ordinate description of the cohort. A 3-D visualisation of cohort 

performance of 20 children from the same school (school A), based on the first 3 co-ordinates from 

an MDS analysis, is shown in figure 4. The performance-band of each child is indicated by the colour 

shading and this indicates that the distribution of the cluster is in the form of a sphere, with the best 

performers at the centre and progressively lower performers at greater radial distances from the 

central point. 

 

The two platinum-band children from school A are used as a reference standard and included in all 

data assessments (i.e. they are added to the cohort from other schools). In this way, every similarity 

 

Figure 4: 3D visualisation of a single school cohort based on MDS co-ordinates. Platinum, gold, 

silver and bronze banding of each child is indicated by colour. Superimposed sphere and scoring 

radius indicates relative position within the 3-D space. (note: a fixed linear offset is applied to all 

data points so that the mean value of the platinum-band children is at the [0,0,0] point) 
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matrix incorporates a comparison of participants with these two reference children and so there is 

benchmarking across all measurements. 

 

Relation of standard and objective assessment 

To obtain a score for each child their Euclidean distance, R, is calculated, using all n-1 co-ordinates of 

the MDS (when visualising the data within the reduced, 3-dimensional representation, R is the radial 

distance from the sphere centre). A final transformation is applied to these R-vector values to obtain 

a sensor score, M which then allows comparison to the human scorer assessments: 

 

𝑀 = (1.3 − 𝑅) × 50    (3) 

 

The (1.3 – R) term inverts the ranking from the MDS to give a maximum rather than a minimum 

score to the platinum-band children (minimum sphere radius equates to high performance score). 

The multiplication factor and reference constant within the brackets in equation 3 act to apply a 

uniform scaling of the dimensionless, MDS vector to match the scoring range of the standardised 

Dragon Challenge marking scheme. This is necessary as the sensor score stems from a similarity co-

efficient whereas the standard scores are based on the Dragon Challenge assessment protocol, in 

this child performance is scored in situ by trained assessors and recorded on the Child Performance 

Record form. Their overall score is determined by the total time to completion and skill performance 

criteria within each exercise (technique and outcome), with each of these given equal weighting. The 

skill scoring format has a binary structure with a 1 being recorded if a child performs a criterion 

correctly (e.g. catches a ball) or a 0 if not. The total skills-related score (technique and outcome) for 

all 9 activities ranges between 0-36 and the time to complete the challenge is scored between 0-18, 

thus giving a total scoring range of 0-54. To provide a broader comparative measure specific cut-

points are generated for the total score using the 33rd, 66th, and 95th percentiles based on pilot 

data collected across Wales by expert assessors in Spring/Summer 2015. These percentile thresholds 

were selected to categorise the children into Bronze (lower tertile), Silver (middle tertile), Gold 

(upper tertile) and Platinum (top 5%) bands. (Full details of the Dragon Challenge scoring protocol 

can be found in Stratton, 2015). 

 

Correlation plots of sensor-derived and human scores are shown in figures 5A and 5B for a single 

school (one measurement set) and a group of schools (measurement on multiple days). In both 

cases, there is a strong, linear correlation between the data sets (rs ≥ 0.57, p-value < 0.05)(Cohen 

1988), verifying that automated scoring from the sensor data does reflect the judgements made by 

the human assessors.  
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The correlation of performance-band assignments is detailed in Table 1, which presents the 

classification matrix for band-assignment by sensor and human scores. The banding of the children is 

also indicated in figure 5B with shaded areas of differing colour indicating regions with a band 

difference,  = 0,1 or 2. The sensor-based categorisation of performance band for children from 

school A, agreed with the assessors in 65% of cases and within a single band margin of error in 100% 

of cases (κ-statistic = 0.41). These percentages dropped to 57% and 95% respectively when 

considering all 55 children, drawn from the 4 schools (κ-statistic = 0.34). 

 

 

 

 

 

 

 

 

 

 

Figure 5: A.) correlation plot of human evaluator and motion sensor derived scores for school A 

(Spearman correlation co-efficient, rs = 0.69); B.) correlation plot of human evaluator and motion 

sensor derived scores for children from all 4 participating schools (rs = 0.57). The shaded areas 

indicate performance-band assignments; green – matched, orange - +/- 1 band, red - +/- 2 bands. 
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                     Sensor-score assignment  

 
Human-score 
assignment 

 Bronze Silver Gold Platinum  

Bronze 15% 5% 2% 0% 22% 

Silver 14% 29% 11% 2% 56% 

Gold 2% 5% 9% 2% 18% 

Platinum 0% 0% 0% 4% 4% 

  31% 39% 22% 8%  

 
Table 1: Classification matrix for performance-band assignment from 
machine and assessor scores for children from all participating 
schools. 

 
 

  

Bland-Altman plots of the score results from individual schools are shown in figure 6. The correlation 

co-efficient for a single school cohort ranges between 0.62-0.71, indicating a high level of 

repeatability for the technique when applied to a single data set in which all children are assessed 

within a single session. When the data from the 4 schools (4 separate assessment sessions) is 

combined the correlation co-efficient drops to a value of 0.57. This is not surprising as the data is 

now subject to the increased variability of multiple studies, each performed in a different setting, on 

a different day. 

 

Figure 6: Bland-Altman plots of overall Dragon Challenge score, obtained from standard 

and automated assessments, for individual schools. Solid line – mean difference; dashed 

lines - 95% confidence bounds. 
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4. DISCUSSION AND CONCLUSIONS 

In this paper we present an objective, automated approach to assessing fundamental movement 

skills, using time series analysis on motion sensor data. The technique differs from standard 

approaches in its delivery of a ranking by comparison rather than by score. The relative indexing of 

each child’s performance is based on a similarity matrix and so depends on all, n participants within 

a study (practically, it depends on the [n-1] terms that are summed to give a Euclidean distance). The 

accuracy of the approach is therefore continually updated as more participants are added, giving an 

evolving and ever tighter identification of relative performance. The variance in the sensor-based 

scores, evident in the Bland-Altman plots for each school, relates to the number of assessed children 

through the similarity matrix. The dimensional scaling gives the most accurate representation 

possible of all relationships in the matrix. Thus, for the 20-child sample from school A the algorithm 

is trying to match [n(n-1)]/2 relations (190) whilst for school D with 9 children this becomes 36 

relations. As the sample set is increased the performance of a given child is benchmarked against a 

greater number of their peers and so we obtain greater accuracy is the estimation of their relative 

ranking in the cohort. This can be seen in the reduction of variance in the score difference in figure 6 

plots, for school A. 

We choose dynamic time warping in preference to other comparative techniques such as cross-

correlation because it highlights the ‘time-flow’ of the activity. Differences in the pattern or ‘flow’ of 

motion over time are quantified by the degree of time warp required to reconcile the data traces. 

This provides a dual assessment of performance, measuring both macroscale differences in the two, 

time traces (how fast was the activity completed?) and microscale details of the different motion 

paths taken (how well was the activity completed?). It is therefore ideally suited to process-oriented 

assessment of motor competence as it measures the speed with which an activity is completed and 

parameterises the complex motion patterns that evolve through the exercise. The analysis approach 

adopted is holistic in nature, being based on correlations of the complete time trace and thus 

assesses the exercise activity as a whole. This in in contrast to alternative, reductionist cluster-

techniques such as principle components analysis, where specific parameterisation from time series 

features is required. The adoption of a total measure of performance is limiting as we are unable to 

report on individual skill components such as object control, locomotion or stability(Bisi et al 2017). 

However, the simplification to a single score allows fully automated assessment through the use of a 

single, wrist mounted sensor. 

Multi-dimensional scaling of the similarity matrix provides a visualisation of the performance of the 

cohort. When imaged in a 3-D space the numerical descriptors of group performance are 

transformed to a ‘performance sphere’ - a geometrical construct that positions individuals per ability 

and contextualises the performance of the whole cohort. Children of like-ability occupy a space 

defined by the surface of a sphere of given radius. As their performance worsens their distance from 

the centre of the sphere increases, i.e. they are further away from the optimum. Poorer ability 

children also exhibit greater variability in performance; in the visual representation, this relates to 

the increased surface area produced by a greater sphere radius. At a given radius, differences in the 

position of children on the sphere surface tells us about the different strategies adopted in 

performing the tasks – these children have similar overall performance (same radius on sphere) but 

can be separated by large distances if their motion patterns show marked dissimilarity. The 

geometry of the spherical performance map indicates a narrowing of the FMS ‘window’ for better 

performers: there are multiple ways in which performance can be poorer (e.g. within different 

activities) whereas high performance children tend towards an optimal technique. 
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Comparison of the automated, sensor-based method to the standard approach indicates a strong 

correlation between absolute scores (rs range: 0.57 to 0.71) and a moderate correlation for 

categorical classification of performance (κ range: 0.34 to 0.41). Comparative studies on 

measurement variability within physical activity tests have reported rs values of 0.6 when comparing 

overall scores between different FMS tests(Lander et al 2017) and rs ~ 0.5 – 0.7 for comparison of 

process and product-oriented scores of individual skills(Logan et al 2017). Moreover, comparison of 

inter-rater variability within a single test indicated κ values in the range of 0.2 – 0.6 for overhand 

throw and strike skills(Barnett et al 2014). Thus our approach would appear to provide a robust 

measurement tool that is as accurate as can be expected given these limits in the ability of any single 

exercise programme to fully capture the intricacy of motor skills and the innate variability of human 

scorers. 

Comparison of sensor and human assessment is required to benchmark the automated approach 

and so assess applicability. However, this is a comparison of two markedly different methodologies 

and so it is not appropriate to ask the question of ‘which is right and which is wrong?’ Rather, a 

common goal is approached from two different directions: i. absolute scoring of individuals and 

individual movement components and ii. relative ranking of individuals from similarity measurement 

of the whole activity. The question we seek to answer is ‘do these different techniques give a 

common result when profiling a group’s activity?’, our results indicate that indeed they do. Having 

established a commonality of result the sensor-based assessment can be used as a powerful and 

robust adjunct to assessment by expert scorers. Sensor-based scoring provides a check and common 

reference, allowing cross-validation of scoring tables between assessors. From this, adjusted 

weighting of scores between schools and across wider geographical areas can be implemented, to 

correct for in-built bias and systematic error. For example, within this study the Bland-Altman plots 

in figure 6 show a significant bias in the data from school B. Given that all the score sets are 

consistently moderated through the inclusion of the two Platinum-band performers the appearance 

of a marked bias in this data set raises questions as to the validity of this activity session. The 

introduction of objective scoring with in-built checks such as this, opens the possibility of using 

untrained assessors (e.g. school teachers, sports coaches), allowing wider deployment of the activity 

programme as accurate and dependable ranking is provided by sensor-measurement. 

The development of automated assessment techniques for fundamental movement skills will 

augment outcome measures used in intervention programmes, designed to promote physical 

activity and improve physical literacy. Longitudinal assessments are therefore required so that the 

on-going improvement in children’s physical ability can be captured. The quantitative, sensor-based 

profiling presented here is ideally suited to this task. It is robust, accurate and objective, but also, 

most importantly it is based on comparison and so the evolving performance of an individual is 

easily referenced to previous assessments. This is best envisaged in the context of the ‘performance 

sphere’, where the activity of a child over a series of assessments would be visualised as an evolving 

path through the sphere; mapping their personal performance history and moving ever closer to the 

centre as movement skill levels improved relative to their previous capability and that of their peers. 
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