TY - JOUR
T1 - The effect of tree width on thoracolumbar and limb kinematics, saddle pressure distribution, and thoracolumbar dimensions in sports horses in trot and canter
AU - MacKechnie-Guire, Russell
AU - MacKechnie-Guire, Erik
AU - Fairfax, Vanessa
AU - Fisher, Diana
AU - Fisher, Mark
AU - Pfau, Thilo
PY - 2019/10/1
Y1 - 2019/10/1
N2 - This study evaluated the effect of saddle tree width on thoracolumbar and limb kinematics, saddle pressure distribution, and thoracolumbar epaxial musculature dimensions. Correctly fitted saddles were fitted by a Society of Master Saddler Qualified Saddle Fitter in fourteen sports horses (mean ± SD age 12 ± 8.77 years, height 1.65 ± 0.94 m), and were altered to one width fitting wider and narrower. Horses were equipped with skin markers, inertial measurement units, and a pressure mat beneath the saddle. Differences in saddle pressure distribution, as well as limb and thoracolumbosacral kinematics between saddle widths were investigated using a general linear model with Bonferroni adjusted alpha (p = 0.05). Compared with the correct saddle width, in trot, in the wide saddle, an 8.5% increase in peak pressures was found in the cranial region of the saddle (p = 0.003), a 14% reduction in thoracolumbar dimensions at T13 (p = 0.02), and a 6% decrease in the T13 range of motion in the mediolateral direction (p = 0.02). In the narrow saddle, a 14% increase in peak pressures was found in the caudal region of the saddle (p = 0.01), an 8% decrease in the range of motion of T13 in the mediolateral direction (p = 0.004), and a 6% decrease in the vertical direction (p = 0.004) of T13. Compared with the correct saddle width, in canter, in the wide saddle, axial rotation decreased by 1% at T5 (p = 0.03) with an 5% increase at T13 (p = 0.04) and a 5% increase at L3 (p = 0.03). Peak pressures increased by 4% (p = 0.002) in the cranial region of the wide saddle. Altering the saddle fit had an effect on thoracolumbar kinematics and saddle pressure distribution; hence, correct saddle fit is essential to provide unhindered locomotion.
AB - This study evaluated the effect of saddle tree width on thoracolumbar and limb kinematics, saddle pressure distribution, and thoracolumbar epaxial musculature dimensions. Correctly fitted saddles were fitted by a Society of Master Saddler Qualified Saddle Fitter in fourteen sports horses (mean ± SD age 12 ± 8.77 years, height 1.65 ± 0.94 m), and were altered to one width fitting wider and narrower. Horses were equipped with skin markers, inertial measurement units, and a pressure mat beneath the saddle. Differences in saddle pressure distribution, as well as limb and thoracolumbosacral kinematics between saddle widths were investigated using a general linear model with Bonferroni adjusted alpha (p = 0.05). Compared with the correct saddle width, in trot, in the wide saddle, an 8.5% increase in peak pressures was found in the cranial region of the saddle (p = 0.003), a 14% reduction in thoracolumbar dimensions at T13 (p = 0.02), and a 6% decrease in the T13 range of motion in the mediolateral direction (p = 0.02). In the narrow saddle, a 14% increase in peak pressures was found in the caudal region of the saddle (p = 0.01), an 8% decrease in the range of motion of T13 in the mediolateral direction (p = 0.004), and a 6% decrease in the vertical direction (p = 0.004) of T13. Compared with the correct saddle width, in canter, in the wide saddle, axial rotation decreased by 1% at T5 (p = 0.03) with an 5% increase at T13 (p = 0.04) and a 5% increase at L3 (p = 0.03). Peak pressures increased by 4% (p = 0.002) in the cranial region of the wide saddle. Altering the saddle fit had an effect on thoracolumbar kinematics and saddle pressure distribution; hence, correct saddle fit is essential to provide unhindered locomotion.
KW - Equine
KW - Locomotion
KW - Saddle fitting
KW - Thoracolumbar region
U2 - 10.3390/ani9100842
DO - 10.3390/ani9100842
M3 - Journal Article
SN - 2076-2615
VL - 9
JO - Animals
JF - Animals
IS - 10
ER -