TY - JOUR
T1 - Comparison of Soil Organic Carbon Measurement Methods
AU - Ng, Wing K. P.
AU - Maxfield, Pete J.
AU - Crew, Adrian P.
AU - Teixeira, Dayane L.
AU - Bevan, Tim
AU - Bell, Matt J.
PY - 2025/7/28
Y1 - 2025/7/28
N2 - To enhance agricultural soil health and soil organic carbon (SOC) sequestration, it is important to accurately measure SOC. The aim of this study was to compare common methods for measuring SOC in soils in order to determine the most effective approach among different agricultural land types. The measurement methods of loss-on-ignition (LOI), automated dry combustion (Dumas), and real-time near-infrared spectroscopy (NIRS) were compared. A total of 95 soil core samples, ranging in clay and calcareous content, were collected across a range of agricultural land types from forty-eight fields across five farms in the Southwest of England. There were similar and positive correlations between all three methods for measuring SOC (ranging from r = 0.549 to 0.579; all p < 0.001). On average, permanent grass fields had higher SOC content (6.6%) than arable and temporary ley fields (4.6% and 4.5%, respectively), with the difference of 2% indicating a higher carbon storage potential in permanent grassland fields. Newly predicted conversion equations of linear regression were developed among the three measurement methods according to all the fields and land types. The correlation of the conversation equations among the three methods in permanent grass fields was strong and significant compared to those in both arable and temporary ley fields. The analysed results could help understand soil carbon management and maximise sequestration. Moreover, the approach of using real-time NIRS analysis with a rechargeable portable NIRS soil device can offer a convenient and cost-saving alternative for monitoring preliminary SOC changes timely on or offsite without personnel risks from the high-temperature furnace and chemical reagent adopted in the LOI and Dumas processes, respectively, at the laboratory. Therefore, the study suggests that faster, lower-cost, and safer methods like NIRS for analysing initial SOC measurements are now available to provide similar SOC results as traditional soil analysis methods of the LOI and Dumas. Further studies on assessing SOC levels in different farm locations, land, and soil types across seasons using NIRS will improve benchmarked SOC data for farm stakeholders in making evidence-informed agricultural practices.
AB - To enhance agricultural soil health and soil organic carbon (SOC) sequestration, it is important to accurately measure SOC. The aim of this study was to compare common methods for measuring SOC in soils in order to determine the most effective approach among different agricultural land types. The measurement methods of loss-on-ignition (LOI), automated dry combustion (Dumas), and real-time near-infrared spectroscopy (NIRS) were compared. A total of 95 soil core samples, ranging in clay and calcareous content, were collected across a range of agricultural land types from forty-eight fields across five farms in the Southwest of England. There were similar and positive correlations between all three methods for measuring SOC (ranging from r = 0.549 to 0.579; all p < 0.001). On average, permanent grass fields had higher SOC content (6.6%) than arable and temporary ley fields (4.6% and 4.5%, respectively), with the difference of 2% indicating a higher carbon storage potential in permanent grassland fields. Newly predicted conversion equations of linear regression were developed among the three measurement methods according to all the fields and land types. The correlation of the conversation equations among the three methods in permanent grass fields was strong and significant compared to those in both arable and temporary ley fields. The analysed results could help understand soil carbon management and maximise sequestration. Moreover, the approach of using real-time NIRS analysis with a rechargeable portable NIRS soil device can offer a convenient and cost-saving alternative for monitoring preliminary SOC changes timely on or offsite without personnel risks from the high-temperature furnace and chemical reagent adopted in the LOI and Dumas processes, respectively, at the laboratory. Therefore, the study suggests that faster, lower-cost, and safer methods like NIRS for analysing initial SOC measurements are now available to provide similar SOC results as traditional soil analysis methods of the LOI and Dumas. Further studies on assessing SOC levels in different farm locations, land, and soil types across seasons using NIRS will improve benchmarked SOC data for farm stakeholders in making evidence-informed agricultural practices.
U2 - 10.3390/agronomy15081826
DO - 10.3390/agronomy15081826
M3 - Journal Article
SN - 2073-4395
VL - 15
JO - Agronomy
JF - Agronomy
IS - 8
M1 - 1826
ER -