A systematic review of physiological fitness and biomechanical performance in equestrian athletes

Jenni Douglas, M. Price, D. M. Peters

Research output: Contribution to journalJournal Articlepeer-review

31 Citations (Scopus)


This article presents a systematic review of the literature investigating physical fitness, physiological demands and biomechanical performance in equestrian athletes. Three databases (SportsDiscus, CAB abstracts and PubMed) were searched to identify the literature. The main search term of ‘horse-riding’ was combined with eleven specific keywords (‘fitness’, ‘physiology’, ‘biomechanics’, ‘equestrian’, ‘athlete’, ‘co-ordination’, ‘heart rate’, ‘oxygen consumption’ ‘kinematic’ ‘EMG’ and ‘skill’). Exclusion criteria were: conference proceedings, abstracts, theses, and non-peer reviewed articles. Subsequently, 15 peer-reviewed papers were identified and included within this review. The main research findings are that as a horse progresses through the gaits (walk, trot and canter), the rider's heart rate and oxygen consumption increase. The causal physiological factor at present is thought to be higher levels of tonic muscular contraction particularly of the trunk, which in elite equestrians achieves a more controlled upright trunk position, compared to their novice counterparts. It is the faster gaits, and jumping that require the rider to adopt a ‘forwards’ riding position that necessitates weight bearing to be through the rider's legs, as opposed to a seated position, where weight bearing is predominantly through the pelvis. It is apparent that these ‘forward position’ modes of riding significantly increase metabolic cost and result in elevated levels of blood lactate, thus implying that they incorporate some anaerobic demand. Due to the paucity of literature available for review and particularly that which incorporates data obtained from ‘competitive’ performances, future research should attempt to prioritise investigations in competitive in addition to simulated riding environments. Only when further physiological and biomechanical data are available from a greater range of equestrian disciplines and from a range of level of athletes, will the demands of these sports be more clearly understood. Until such time, the development of evidence-based sport specific and potentially performance enhancing rider strength and conditioning programmes cannot be realised.
Original languageEnglish
Pages (from-to)53-62
Number of pages10
JournalComparative Exercise Physiology
Issue number3
Publication statusPublished - 18 May 2012
Externally publishedYes


  • horse-rider
  • aerobic power
  • heart rate
  • muscular strength
  • position


Dive into the research topics of 'A systematic review of physiological fitness and biomechanical performance in equestrian athletes'. Together they form a unique fingerprint.

Cite this